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H I G H L I G H T S

� Intransitive competition (as in the game rock–paper–scissors) promotes coexistence.
� Spatial structure can enhance intransitivity-mediated coexistence.
� We model intransitivity on spatial, small-world, and regular random graphs.
� Coexistence that occurs in spatial lattices is inhibited as network disorder grows.
� Threshold disorder for monoculture is positively related to population size.
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a b s t r a c t

Intransitive competition occurs when competing strategies cannot be listed in a hierarchy, but rather
form loops—as in the game rock–paper–scissors. Due to its cyclic competitive replacement, competitive
intransitivity promotes strategy coexistence, both in rock–paper–scissors and in higher-richness
communities. Previous work has shown that this intransitivity-mediated coexistence is strongly
influenced by spatially explicit interactions, compared to when populations are well mixed. Here, we
extend and broaden this line of research and examine the impact on coexistence of intransitive
competition taking place on a continuum of small-world networks linking spatial lattices and regular
random graphs. We use simulations to show that the positive effect of competitive intransitivity on
strategy coexistence holds when competition occurs on networks toward the spatial end of the
continuum. However, in networks that are sufficiently disordered, increasingly violent fluctuations in
strategy frequencies can lead to extinctions and the prevalence of monocultures. We further show that
the degree of disorder that leads to the transition between these two regimes is positively dependent on
population size; indeed for very large populations, intransitivity-mediated strategy coexistence may
even be possible in regular graphs with completely random connections. Our results emphasize the
importance of interaction structure in determining strategy dynamics and diversity.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A main question in community ecology is how species can
coexist despite differences in competitive ability (Chesson, 2000;
Huston, 1994; Hutchinson, 1959; Tokeshi, 1999; Wilson, 1990,
2011). Many mechanisms have been proposed, most of which
invoke exogenous factors that lessen the impact of competition.
Here, we deal with a mechanism that is endogenous to the
competitive system itself: competitive intransitivity (Gilpin, 1975;

May and Leonard, 1975). Using simulation models, we consider
intransitive competition and coexistence among ‘strategies’, a gen-
eral term referring to any entities (most commonly species, but also
including physiological, behavioral, life-historical, and even ideolo-
gical variants or strains) that compete, and in doing so, have the
potential to exclude one another from their environment.

Transitive competition occurs when strategies can be listed in a
strict hierarchy in which strategies higher on the list outcompete
those lower on the list, but not vice versa. Transitive competition
appeals to the intuition: If strategy A outcompetes strategy B, and B
outcompetes C, it makes intuitive sense that A outcompetes C.
However, this is not necessarily the case. The simplest counter-
example, and, thus, the simplest example of intransitive competition,
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is the game of rock–paper–scissors, in which Paper beats Rock, Rock
beats Scissors, and Scissors beats Paper. In populations composed of
these three strategies, cyclic dynamics occur, leading to the potential
for the coexistence of all three, provided the fluxes in the cycles
are not too strong (e.g., Gilpin, 1975; May and Leonard, 1975;
Vandermeer, 2011). Rock–paper–scissors and its descendants are
fundamentally frequency-dependent phenomena, and the study of
intransitive competition and its effects on coexistence are important
facets of evolutionary game theory (Hofbauer and Sigmund, 1998;
Maynard Smith, 1982; Nowak, 2006; Sigmund, 2010). Extending
beyond theoretical considerations, real-world empirical examples of
intransitivity-mediated coexistence now span many branches of the
tree of life, including within or among bacteria (Kerr et al., 2002;
Kirkup and Riley, 2004; Nahum et al., 2011), vertebrate (Bleay et al.,
2007; Sinervo and Lively, 1996; Sinervo et al., 2007) and invertebrate
animals (Buss, 1976, 1980; Buss and Jackson, 1979; Dunstan and
Johnson, 2005; Jackson and Buss, 1975; Rubin, 1982), coralline algae
(Buss, 1976, 1980; Buss and Jackson, 1979), plants (Lankau and
Strauss, 2007; Taylor and Aarssen, 1990), and possibly phytoplankton
(Huisman and Weissing, 2001b) and yeasts (Paquin and Adams,
1983). Intransitivity also bears upon important issues in human
decision-making procedures (Kendall and Babington Smith, 1940;
May, 1954; Tversky, 2004), including voting systems (Arrow, 1950;
Hughes, 1980; Riker, 1961).

Although classic theory and simulation papers typically deal
with three-strategy intransitivity (e.g., Czárán et al., 2002; Durrett
and Levin, 1998; Frean and Abraham, 2001; May and Leonard,
1975; Neumann and Schuster, 2007; Schreiber and Killingback,
2013; Szabó et al., 2004; Tainaka, 1988), and many of the empirical
examples above involve variants of rock–paper–scissors (e.g.,
toxic, resistant, and susceptible strains of Escherichia coli (Kerr
et al., 2002); orange, yellow, and blue chromo-behavioral morphs
of side-blotched lizards (Sinervo and Lively, 1996)), the study of
the relationship between competitive intransitivity and coexis-
tence can be generalized to more strategy-rich communities
(Gilpin, 1975; Huisman and Weissing, 1999, 2001a,b; Huisman et
al., 2001; Karlson and Jackson, 1981; Laird and Schamp, 2006,
2008, 2009). This reflects the facts that (a) in many systems, multi-
strategy communities are common (e.g., multi-species commu-
nities in biological systems or multiple ideologies in the socio-
political sphere), and (b) intransitivity readily results from typical
traits of these multi-strategy communities, such as trade-offs
during exploitation competition (Huisman and Weissing, 1999,
2001a,b; Huisman et al., 2001) and allelopathy (Kerr et al., 2002;
Lankau and Strauss, 2007). When this generalization is made, the
transitive-intransitive dichotomy gives way to a series of inter-
mediately intransitive competition scenarios that becomes
increasingly continuous as the number of strategies grows. The
level of intransitivity across this continuum can be quantified
using an index (Bezembinder, 1981; Kendall and Babington Smith,
1940; Laird and Schamp, 2006, 2008; Petraitis, 1979; Slater, 1961),
making it straightforward to examine quantitatively the relation-
ship between strategy coexistence and intransitivity. As would be
expected by extrapolating the lesson of three-strategy coexistence,
competitive intransitivity also promotes strategy coexistence
when more than three strategies are involved (e.g., Allesina and
Levine, 2011; Karlson and Jackson, 1981; Laird and Schamp, 2006,
2008, 2009; Rojas-Echenique and Allesina, 2011; but see
Vandermeer and Yitbarek, 2012 for a counterexample). Thus,
intransitivity may play an important role in maintaining diversity
in communities of varying types.

The simplest intransitivity models within evolutionary game
theory have no interaction structure; rather, they behave accord-
ing to mean-field assumptions, whereby strategies embedded in
large, well-mixed communities interact according to their relative
abundances and the principle of mass action (e.g., Allesina and

Levine, 2011; Frean and Abraham, 2001; Gilpin, 1975; May and
Leonard, 1975). Allesina and Levine (2011) provide an effective
means to deal with these models and predict the outcome of
competition. However, paralleling the rising interest in the effect
of interaction structure in evolutionary game theory in general
(particularly in models designed to understand the evolution of
cooperation, and, specifically, how cooperators and defectors can
coexist: Hauert, 2001, 2002, 2006; Hauert and Doebeli, 2004;
Laird, 2011, 2012, 2013; Laird et al., 2013; Lieberman et al., 2005;
Nowak and May, 1992, 1993; Nowak et al., 1994a,b; Szabó and
Tőke, 1998; Szolnoki et al., 2008), there is a proliferation of studies
of intransitive competition in which mean-field assumptions are
relaxed (e.g., Durrett and Levin, 1998; Frean and Abraham, 2001;
Károlyi et al., 2005; Laird, 2014; Reichenbach et al., 2007;
Schreiber and Killingback, 2013; Szabó et al., 2004; Szolnoki and
Szabó, 2004; Tainaka, 2001; Zhang et al., 2009). The general lesson
is that variation in interaction structure can modify greatly the
outcome of competition in intransitive systems.

Spatial structure, whereby individuals interact preferentially
(or solely) with their nearest neighbors, is one of the main types of
interaction structure that has been modeled in the context of
intransitivity-mediated strategy coexistence (Durrett and Levin,
1998; Frean and Abraham, 2001; Kerr et al., 2002; Laird and
Schamp, 2006, 2008, 2009). This type of structure is particularly
relevant in biological systems whose members are largely sessile
and confined to a two-dimensional substrate (e.g., biofilms (Kerr et
al., 2002); encrusting benthic invertebrates (Dunstan and Johnson,
2005; Wootton, 2001)). Generally speaking, simulations predict
that spatially explicit interactions enhance intransitivity-mediated
coexistence (e.g., Durrett and Levin, 1998; Frean and Abraham,
2001; Kerr et al., 2002; but see Laird and Schamp, 2008; Rojas-
Echenique and Allesina, 2011). This prediction is supported by key
experimental data (e.g., Kerr et al., 2002).

The advent of evolutionary graph theory (Lieberman et al.,
2005; Nowak, 2006; Perc et al., 2013; Szabó and Fáth, 2007)
provides a framework whereby individuals interacting in arbitra-
rily structured populations can be studied. In this manner, spatial
structure becomes a special case of interaction topology. As with
spatial extensions of evolutionary game theory, more general
graph-theoretical extensions are strongly influenced, in terms of
approach, by recent models of the evolution of cooperation (Du et
al., 2009; Hadzibeganovic et al., 2012; Lieberman et al., 2005; Lima
et al., 2009; Nowak, 2006; Pacheco et al., 2006; Szolnoki and Perc,
2009; Szolnoki et al., 2008; Wang et al., 2006). In evolutionary
graph theory, individuals interact with a subset of the population/
community to which they belong, though not necessarily with
those that are spatially close. In terms of intransitivity-mediated
strategy coexistence, evolutionary graph theory is most relevant in
humans and other species in which the existence of social net-
works can lead to complex population-level interaction structures.
Additionally, there are other systems (biological, social, and
technological) where interactions on graphs or networks are the
norm (Watts and Strogatz, 1998). Finally, even in systems where
aspatial interaction graphs are unlikely, modeling the outcome of
interactions on such graphs may provide a point of contrast—a tool
with which salient aspects of more realistic interaction structures
can be examined in detail (e.g., Laird, 2014).

Szabó et al. (2004) and Szolnoki and Szabó (2004) consider the
rock–paper–scissors game along a continuum of regular, small-
world networks (Watts and Strogatz, 1998) ranging from spatial
lattices to regular random graphs (also see Kuperman and
Abramson, 2001; Laird, 2014; Ying et al., 2007). They show that
by increasing quenched randomness (profitably thought of as an
inverse measure of inherent spatial structure), disparate parts
of the network become synchronized, leading to a Hopf bifurcation
at which the strategy frequency dynamics transition from a
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stationary state to a limit cycle. Further increases in quenched
randomness lead to an increasing (but decelerating) amplitude of
oscillations in this limit cycle, resulting in the potential for strategy
extinctions, and inevitable monoculture, unless the population is
sufficiently large. (Szabó et al. (2004) also show a rather similar
pattern with increased annealed randomness, which connects
spatial lattices with well-mixed, mean-field dynamics. In an
interesting convergence from a meta-community as opposed to
graph-theoretical model, Schreiber and Killingback (2013) discov-
ered a critical dispersal rate beyond which strategy coexistence
was no longer possible.)

Here, we extend the work of our predecessors (Kuperman and
Abramson, 2001; Szabó et al., 2004; Szolnoki and Szabó, 2004;
Ying et al., 2007) to communities with as many as 101 strategies,
reflecting the fact that many systems, especially biological com-
munities, often exhibit extraordinary degrees of coexistence. Our
motivation is to determine how the degree of intransitivity and
population structure interact to determine strategy coexistence in
finite competitive communities. We show that when quenched
randomness is below a critical value, as in spatially structured
systems, long-term strategy richness is positively related to
intransitivity, as predicted by previous research (Laird and
Schamp, 2006, 2008). Above the critical value, however, the
increasing violence of strategy oscillations leads to random extinc-
tions and the prevalence of monocultures. Further, building on the
notion that the amplitude in strategy oscillations rises more slowly
with quenched randomness in large compared to small popula-
tions (Szabó et al., 2004), we show that the critical value increases
with population size and may even disappear altogether in very
large populations. Our results emphasize the importance of inter-
action structure and population size in determining strategy
dynamics and diversity.

2. Methods

2.1. Graph structure

In our model, competition is characterized by two graphs, the
interaction graph and the tournament graph. Examining the out-
come of competition when these two types of graphs are varied is
one of the main goals of this paper.

2.2. Interaction graph and quenched randomness (Q)

The interaction graph describes the population interaction
structure; i.e., it determines who interacts with whom. Individuals
are placed at nodes, and edges connect individuals that interact.
It is possible to have complete interaction graphs, where every
node is connected to every other node; in large populations,
interactions on such graphs approximate mean-field dynamics.
However, here we consider incomplete (albeit connected) graphs
in which each node is connected only to a subset of the other
nodes. Specifically, we consider k-regular connected graphs, where
k is the number of other nodes to which every node is connected
(i.e., the degree or neighborhood size). Incomplete graphs are
appropriate in many real situations: both biological and human
systems are rarely so well mixed that all pairs of individuals are
equally likely to interact; rather, individuals are more likely to
interact with those who are spatially close, with those to whom
they are socially connected, or both, to varying degrees.

We investigate a continuum of interaction graphs along a
gradient of quenched randomness (Szabó et al., 2004; Szolnoki
and Szabó, 2004), ranging from graphs representing spatial lattices
to regular random graphs. Quenched randomness is applied by
breaking a proportion Q of the edges in a two-dimensional lattice

and then randomly joining pairs of the resulting half-edges so that
every node continues to have exactly k edges emanating from it.
When Q¼0, the original lattice is preserved. When Q¼1, the
resulting interaction graph is a regular random graph. When
0oQo1, the resulting interaction graph is a small-world network
(e.g., Fig. A1) (Szabó and Fáth, 2007; Szabó et al., 2004; Szolnoki
and Szabó, 2004; Watts and Strogatz, 1998). Thus, as Q increases
from 0, the resulting graphs become progressively detached from
the inherent spatial properties of the original lattices used to
create them; they also have lower characteristic path lengths
(‘degrees of separation’) and clustering coefficients (‘cliquish-
ness’)—traits Watts and Strogatz (1998) argue are common over
a diverse suite of large networks in nature. Following intransitive
competition on this continuum of graphs allows us to predict the
characteristics of the sorts of systems where intransitivity-
mediated coexistence is more likely to occur.

We consider interaction graphs with k¼3, 4, 6, or 8, as the
number of neighbors is known to be important in the rock–paper–
scissors game (Szolnoki and Szabó, 2004). Interactions on k¼3, 4,
or 6 lattices are equivalent to interactions taking place between
bordering cells arrayed as tessellated equilateral triangles, squares,
or regular hexagons (i.e., the three types of regular tessellations on
the plane) in cellular automaton models. Interactions on k¼8
lattices are equivalent to interactions taking place between
bordering cells, and between cells sharing a common corner, in
cellular automaton models composed of tessellated squares. The
neighborhoods that arise in the k¼4 and k¼8 cases have special
names in the context of cellular automata: the von Neumann
neighborhood and the Moore neighborhood, respectively (Durrett
and Levin, 1994).

2.3. Tournament graph and relative intransitivity (RI)

The tournament graph describes how individuals bearing
different strategies fare against one another when they interact.
It is a complete, oriented graph in which edges connecting pairs of
nodes (strategies) point from competitive subordinates to competi-
tive dominants. This allows us to generalize the rock–paper–scissors
game into more strategy-rich scenarios (e.g., rock–paper–scissors–
lizard–Spock1 (Vukov et al., 2013) and beyond). While the most
celebrated examples of intransitivity-mediated coexistence involve
three strategies (e.g., Kerr et al., 2002; Sinervo and Lively, 1996), many
of the systems in which it is hypothesized be important (corals,
phytoplankton) are considerably more rich.

The topology of the tournament graph determines the level of
competitive intransitivity (Laird and Schamp, 2009). We measure
intransitivity using the relative intransitivity index (RI) (Laird and
Schamp, 2008). To do so, the tournament graph is first converted
to a tournament matrix M¼[mij], in which mij¼1 if strategy i is
dominant to strategy j, and mij¼0 otherwise (i.e., highly asymme-
trical or unbalanced competition; for an approach that considers a
gradient in competitive balance, see Vandermeer and Yitbarek,
2012). For each strategy i, wi¼Σjmij determines the total number
of wins that strategy has against all the other strategies. The
sequence of all wi is the ‘score sequence’ of M. Score sequences are
presented in non-descending order. Competitive hierarchies
include both highly dominant and highly subordinate strategies
and therefore have score sequences with relatively high sums of
squared deviations (or, equivalently, variance; Laird and Schamp,
2006, 2008). For example, a hierarchy of seven strategies has
the score sequence {0, 1, 2, 3, 4, 5, 6} and a sum of squared
deviations (hereafter SS) of Σi(wi�wavg)2¼28. Highly intransitive

1 Often attributed to S. Kass and K. Bryla (http://www.samkass.com/theories/
RPSSL.html).
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tournaments, on the other hand, are composed of more-or-less
evenly matched strategies, leading to score sequences with rela-
tively low sums of squared deviations; a perfectly intransitive
seven-strategy tournament has the score sequence {3, 3, 3, 3, 3, 3,
3}, resulting in SS¼0 (e.g., Fig. A2). Relative intransitivity is
calculated as RI¼1�(SSobs�SSmin)/(SSmax�SSmin), where SSobs is
the SS of the observed score sequence, and SSmax and SSmin are,
respectively, the greatest- and least-possible SS values of score
sequences derived from tournaments composed of the same
number of strategies as the observed tournament. Thus, RI is a
rational number between 0 and 1 with large values corresponding
to more intransitive tournaments. Following Kendall and
Babington Smith (1940), SSmin¼0 when the number of strategies,
s, is odd and s/4 when s is even. Similarly, SSmax¼(s3�s)/12 (also
see Appendix A of Rojas-Echenique and Allesina, 2011).

Interestingly, RI is exactly equivalent to 1�ζ, where ζ is Kendall
and Babington Smith’s (1940) coefficient of consistence, a metric
originally designed to test for the consistency of experimental
subjects when presented with a series of paired comparisons.
Kendall and Babington Smith (1940) demonstrate that during
competitive reversals, where the entries of mij and mji are
swapped (ia j), the smallest possible non-zero change to SSobs
is 2. This implies that the smallest possible increment of RI is
ϕ¼24/(s3�s) when s is odd and ϕ¼24/(s3�4s) when s is even.
Kendall and Babington Smith (1940) make the further claim that
all the increments are possible, constrained only by SSmax and
SSmin, implying that for any given sZ3, there exist tournaments
whose RI’s encompass all the values dϕ, where d is an integer
between 0 and ϕ�1, inclusive. This claim is consistent with our
preliminary investigations that show that for sϵ{3, 4,…,101}, it is
possible to generate tournaments with all candidate RI¼dϕ values
(not shown). Furthermore, d is equal to the number of intransitive
triads in sub-graphs of M, and ϕ�1 the maximum number of such
triads (Kendall and Babington Smith, 1940), demonstrating that RI
has an intuitive link with M’s intransitivity, and not merely a
convenient statistical one (Fig. A2).

Finally, we note that it is also possible to study graphs that
feature non-tournament strategy-competition outcomes (e.g.,
those with ties or with probabilistic outcomes; Vandermeer and
Yitbarek, 2012); however, these “introduce complications of
a most intractable kind” (Kendall and Babington Smith, 1940,
p. 325), and we do not consider them at this juncture.

2.4. Simulations

We consider square lattices with periodic boundaries (and the
small-world and regular random graphs that emerge from them
when Q40) with N¼2502¼62,500 nodes and 31,250k edges (i.e.,
Nk/2 edges). At the start of each model run, all the nodes of a new,
randomly generated interaction graph of quenched randomness Q
are populated randomly and independently with s strategies
which interact according to a new, randomly generated tourna-
ment graph of relative intransitivity RI. We investigate initial
strategy richness values of s¼6, 7, 20, 21, 100, and 101 (i.e.,
even-odd pairs of low, medium, and high initial strategy richness).
The most initially strategy-rich scenario (s¼101) is detailed in the
main text2; all are considered in Fig. A3. Our motivation for using
even-odd pairs is that only odd tournament sizes can have totally
uniform score sequences (i.e., SSobs¼0), leading to greater poten-
tial for intransitivity-mediated coexistence.

In every time-step, individuals located at two nodes sharing
an edge, X and Y, are chosen at random. If, according to the

tournament graph, X’s strategy defeats Y’s strategy, a clone of X
deterministically replaces Y. On the other hand, if Y’s strategy
defeats X’s strategy, a clone of Y deterministically replaces
X. (Stochastic or irrational replacement rules are also possible
(Vandermeer and Yitbarek, 2012), as are scenarios in which a focal
individual simultaneously interacts with all its neighbors during a
time-step (Laird and Schamp, 2006, 2008; Rojas-Echenique and
Allesina, 2011).) N time-steps are defined as one model generation.
The models are run until strategy monoculture occurs, up to a
maximum of 105 generations. There is no mutation, so once a
monoculture is reached, no further changes to the node identities
of the interaction graph are possible.

We consider values of Q between 0 and 1, inclusive, in
increments of 1/100, crossed with values of RI between 0 and 1,
inclusive, in increments of 1/8, 1/14, 1/330, 1/385, 1/400, and
(again) 1/400, for s¼6, 7, 20, 21, 100, and 101, respectively. (Where
1/8, 1/14, 1/330, and 1/385 are the smallest increments in RI for
s¼6, 7, 20, and 21, respectively. The smallest increments for s¼100
and s¼101 are 1/41,650 and 1/42,950, respectively; however, in
these cases, considering all possible values of RI would take an
unfeasibly long simulation time.) For every value of RI considered,
we start with a temporary s-strategy hierarchical tournament
matrix and apply successive competitive reversals between ran-
domly chosen pairs of strategies. If the matrix’s RI value after the
reversal is closer to the target value than it was before the reversal,
the reversal is accepted. If the RI value becomes farther from the
target value, the reversal is discarded. If the RI value remains
equally close to the target value, the reversal is accepted with
probability 1/2 and discarded otherwise. The number of proposed
reversals is 104 and 105 for smaller (sr21) and larger (sZ100)
numbers of strategies, respectively. This approach ensures that the
target RI value is met (or approximated as closely as possible in
cases where the target RI is not a multiple of ϕ) while still allowing
the generation of random tournaments (whose unique manifesta-
tions outnumber the number of possible values of RI; e.g., Laird
and Schamp, 2009).

For every generation in every model run, we measure
(i) current strategy richness, (ii) current strategy evenness, and
(iii) current relative intransitivity. Current strategy richness, r, is
simply the number of extant strategies. Current strategy evenness,
Evarϵ[0, 1], is an index with high values (near 1) when strategies
are approximately equally abundant and low values (near 0)
when strategies have very different abundances. Evar is calculated
as 1�(2/π)arctan{Σi[ln(xi)�Σjln(xj)/r]2/r}, where xi is the relative
abundance of extant strategy i (Smith and Wilson, 1996). In com-
munity ecology, richness and evenness together traditionally repre-
sent the two components of diversity. Current relative intransitivity
RI is calculated for modified tournament matrices that only include
extant strategies. Additionally, for every model run we measure the
number of generations until the first extinction.

3. Results and discussion

3.1. k¼4, 6, or 8 neighbors per individual

For k¼4, 6, and 8, and s¼101, the results were qualitatively
similar. At low levels of quenched randomness, QoQc (where Qc is
approximately 0.41, 0.28, and 0.27 for k¼4, 6, and 8, respectively;
Table 1, Fig. A4), the number of strategies coexisting after 105

generations, r, was positively related to initial RI (Fig. 1, Fig. A3).
This result is explicable in terms of the final RI on which
assemblages settled, following earlier strategy extinctions. Regard-
less of the initial RI, the final RI of assemblages in which
coexistence occurred was generally close to 1, although perfect
intransitivity was by no means a prerequisite for strategy coexistence

2 Coincidentally, this is also the number of strategies in D. Lovelace’s RPS-101,
“the most terrifyingly complex game ever” (http://www.umop.com/rps101.htm).
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(Fig. 1, Fig. A3). High RI corresponds to situations where there is low
variation in strategies’ competitive abilities at the level of the
assemblage, promoting strategy coexistence (Laird and Schamp,

2006). Further, sub-graphs of highly intransitive tournament graphs
are themselves likely to be highly intransitive (e.g., Fig. A2; also see
Section 2.3). Thus, it typically takes fewer strategy extinctions for an

Table 1
Critical quenched randomness, Qc, for four numbers of neighbors per individual, k, and six
initial numbers of strategies, s, as determined by the model output shown in Figs. A3 and A5
(population size: above dashed line: N¼62,500; below dashed line: N¼10,000). Qc was
estimated as the lowest value of Q for (and above) which more than 70% of the initial RI
values examined resulted in monoculture within 105 generations. Note that for k¼3, no
critical quenched randomness is apparent, at least for these population sizes. See Fig. A4 for
details.

Fig. 1. Generations until first extinction (top row), final strategy richness (r; second row), final strategy evenness (Evar; third row), and final relative intransitivity (RI; bottom
row) as a function of the number of neighbors per individual (k; columns), initial relative intransitivity (RI), and quenched randomness (Q). Population size: N¼62,500; initial
number of strategies: s¼101. Each pixel represents a single model run. Interpretation of colors is given in the legends. (In the bottom row, white regions correspond to
situations where ro3, meaning that RI is undefined because SSmax¼SSmin).
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initially relatively intransitive assemblage to reach a state of
intransitivity-mediated coexistence, compared to an initially rela-
tively transitive assemblage. For a given initial strategy richness,
assemblages with greater initial intransitivity therefore tend have a
greater final strategy richness.

This raises the question, then, of why the final strategy richness
in even initially highly intransitive assemblages was less than 20
in all the model runs that started with s¼101 strategies (Fig. 1,
Table 2). That is, why do so many strategies go extinct so early in
the simulations (Fig. A3)? This appears to be due to finite size
effects associated with small average strategy population sizes in
initially strategy-rich assemblages. Indeed, in model runs with
s¼6, 7, 20, and 21, the final strategy richness was often much
closer to the maximum than in model runs with s¼100 and 101
(Table 2, Fig. A3). Of course, the long-term number of strategies is
capped at a maximum of s, so only limited inference can be drawn
from this trend. To get at the issue more directly, we re-ran the
s¼101 model runs with a smaller interaction graph size of
N¼10,000, such that average strategy population sizes would be
less than one sixth as large as in the original runs for a given
number of extant strategies (Fig. A5). As expected, smaller inter-
action graphs typically supported fewer strategies in the long term
compared to larger interaction graphs (Table 2, Fig. 2).

Due to the initial strategy extinctions, runs that started with
odd numbers of strategies typically passed through their even
counterparts quite rapidly, leading to the observation that there
were only minor, inconsistent differences in the results within
even-odd pairs of initial strategy richness (e.g., Tables 1 and 2; Fig.
A3). An exception to this finding is in the low initial richness pair
(s¼6 versus 7) with maximum RI; here, in the odd member of the
pair, initial strategy extinctions often did not occur, leading to

greater long-term coexistence than in the even member of the pair
(Table 2; Fig. A3).

A more interesting result is that regardless of the parity of the
starting strategy richness, after 105 model generations the richness
of the remaining strategies was almost always odd (499.99%
across all combinations of s, k, RI, and Q for N¼62,500). Allesina
and Levine (2011) demonstrated that in the absence of niche
differences, tournaments conducted in a mean-field setting must
collapse to an odd number of strategies, because “for any tourna-
ment composed of an even number of species, we can find a
subtournament composed of an odd number of species that
collectively wins against each of the remaining species more often
that in loses, eventually driving the other species extinct”
(p. 5640). This finding clearly generalizes to the network-
structured populations examined here. On the other hand, real
communities are rather less likely to be biased toward an odd
number of strategies due to other, concurrent coexistence
mechanisms such as niche differentiation, disturbance, trophic
interactions, and source-sink dynamics.

When Q4Qc, there was no longer a positive relationship
between r and RI because long-term strategy coexistence was
typically not possible (Fig. 1, Fig. A3). Rather, strategy monoculture
generally occurred within 105 generations and typically much
earlier (see time series in Fig. A3). Interestingly, Qc appears to be
largely independent of initial RI; beyond Qc, strategy monoculture
was typical in both initially transitive and initially intransitive
assemblages, although strategy coexistence was occasionally
observed at values of Q slightly above Qc in the latter case,
especially on k¼6 and k¼8 interaction graphs (Fig. 1, Fig. A3).
(Strategy monocultures also occurred when QoQc, but only in
very highly transitive assemblages.)

Table 2
Greatest observed strategy richness, r, after 105 generations, for four numbers of neighbors
per individual, k, and six initial numbers of strategies, s. Population size: above dashed line:
N¼62,500; below dashed line: N¼10,000.

Fig. 2. Differences in final strategy richness between populations of N¼62,500 and N¼10,000 as a function of the number of neighbors per individual (k; panels), initial
relative intransitivity (RI), and quenched randomness (Q). Red regions indicate that the model run for N¼62,500 had greater strategy richness after 105 model generations
than the corresponding model run for N¼10,000; blue regions indicate the model run for N¼10,000 had the greater strategy richness; white regions indicate that the
strategy richness was the same.

R.A. Laird, B.S. Schamp / Journal of Theoretical Biology 365 (2015) 149–158154



Why is there a cutoff of Q (Qc), beyond which strategy
coexistence is unlikely? Szabó et al. (2004) showed that for
three-strategy tournaments, quenched randomness in the inter-
action graph is strongly positively related to the magnitude of
strategy frequency oscillations, as evidenced by an increased area
of the limit cycle relative to the total area of the phase space. If
the amplitude of the oscillations becomes sufficiently large (i.e.,
when Q is greater than Qc), monocultures are likely in finite
populations (Fig. A6; bottom row). For instance, Fig. 3 shows three
example time series for highly intransitive assemblages which
initially had s¼101 strategies, but which supported r¼3 strate-
gies in the long run (k¼4, initial RI¼16/17). As Q increases from
0.10 to 0.25 to 0.40, the magnitude of the oscillations of the three
extant strategies increases and closely approaches the edges of
the phase space. Indeed, in the full time-series for Q¼0.40 (i.e., a
value of Q very close to the estimated Qc of 0.41; Table 1),
one strategy came within a single individual of going extinct,
a situation that, had it occurred, would have rapidly led to
monoculture.

Unlike the effect of initial RI, within the region of strategy
coexistence (i.e., QoQc), Q had very little effect on final richness,
except for values of Q very close to Qc (Fig. 1, A3). On the other
hand, Q had a sensitive influence, and initial RI only a weak one,

on the other component of strategy diversity, evenness (Fig. 1,
A3). Specifically, final evenness was strongly negatively related
to Q (except beyond Qc, where monocultures prevail, and
evenness was 1 by definition); however, initial RI was of little
consequence to final evenness. As with richness, these evenness
results can be interpreted in terms of the greater magnitude of
strategy frequency oscillations as Q increases (Fig. 3). Larger
oscillations mean that a small number of strategies typically
dominate at any given time, while the rest have very low
frequency; such disparity leads to reduced evenness (Smith
and Wilson, 1996).

The number of generations until the first strategy extinction
followed a somewhat different pattern from final richness, final
evenness, and final RI, in that there was no evidence of an effect of
a critical value of Q (Fig. 1, Fig. A3). Rather, there was a strong
effect of initial RI, with more initially intransitive assemblages
taking a longer time to lose their first strategy compared to
initially transitive ones. When even the most weakly competing
strategies can outcompete at least one of their competitors, and
when even the most strongly competing strategies are outcom-
peted by at least one of their competitors, both of which frequently
occur when RI approaches 1, it takes longer for the stronger
competitors to purge the weak ones.

Fig. 3. Corresponding time series (generations 99,900 to 100,000; left column) and phase diagrams (generations 90,001 to 100,000; right column) for three example model
runs for N¼62,500, k¼4, s¼101, initial RI¼16/17, and Q¼0.1 (top row), 0.25 (middle row), or 0.4 (bottom row). Examples were chosen based on those that had the same final
strategy richness (i.e., three strategies, arbitrarily labeled X (red), Y (blue), and Z (green) such that X-Y-Z-X). Note that the model runs shown here are independent of
those from the same parameter values in Fig. 1. In the phase diagrams, the point (1/3, 1/3, 1/3) is shown for visual reference.
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3.2. k¼3 neighbors per individual

For s¼101 and k¼3, the results were qualitatively different
from when individuals had k¼4, 6, or 8 neighbors (Fig. 1, Fig. A3).
Unlike those cases, when k¼3 there was no apparent critical value
of Q beyond which strategy coexistence was not possible (Table 1,
Fig. A4). Although strategy frequency oscillations do increase with
Q for k¼3 (as with the other k-values), they fail to reach a
magnitude that leads to strategy monoculture (e.g., Fig. A6; bottom
row).

However, it is evident that these results are strongly dependent
on population size. Our main results employed a population size of
N¼62,500. When contrasting three-strategy competition in per-
fectly intransitive tournaments with populations of N¼62,500 and
N¼10,000, we see that the latter do have a value of Q beyond
which monocultures sometimes occur (Fig. A6). Further, by obser-
ving the relationship between the magnitude of strategy fre-
quency oscillations and population size in perfectly intransitive
three-strategy tournaments played on regular random graphs
(Q¼1), we see that coexistence is less likely than monoculture
when N is less than approximately 8876 (Fig. A7). Thus, it is clear
that a consistently measurable Qc for k¼3 interaction graphs only
comes into play at smaller population sizes than those examined
in detail here.

Moreover, it is interesting to note that for all values of k, the
magnitude of strategy frequency oscillations rose more rapidly
with Q in N¼10,000 populations than in N¼62,500 populations
(Fig. A6), leading to lower estimates of Qc in the former (i.e., for
k¼4, 6, and 8; Table 1). Based on this trend, the k¼3 results, and
similar findings reported by Szabó and Fáth (2007), Szabó et al.
(2004), Szolnoki and Szabó (2004), we surmise that Qc may
disappear altogether even for k¼4, 6, or 8 in populations that
are substantially greater than N¼62,500. This is supported by
further results given in Fig. A7, which show that when individuals
have k¼4 neighbors, three-strategy intransitive assemblages
(RI¼1) can be supported even in regular random graphs (Q¼1),
provided the population size is sufficiently high (N greater than
approximately 206,297 for a predicted probability of strategy
coexistence of 40.5). The minimum population size, if there is
one, that can sustain intransitive coexistence across all values of Q
when k¼6 or 8 is even larger (unknown, but greater than one
million; Fig. A7).

3.3. Conclusions

Despite earlier misgivings surrounding its importance (Wilson,
1990), intransitive competition is now known to occur in many
human endeavours (Arrow, 1950; Hughes, 1980; Kendall and
Babington Smith, 1940; May, 1954; Riker, 1961; Tversky, 2004)
and biological systems (Buss, 1980; Buss and Jackson, 1979;
Dunstan and Johnson, 2005; Huisman and Weissing, 2001b; Kerr
et al., 2002; Kirkup and Riley, 2004; Lankau and Strauss, 2007;
Rubin, 1982; Sinervo and Lively, 1996; Sinervo et al., 2007; Taylor
and Aarssen, 1990). In addition, attempts to understand popula-
tion interaction structure and its effects on strategy dynamics and
coexistence, particularly in cases where interaction connections
are disordered and aspatial, have come to the fore (Du et al., 2009;
Hadzibeganovic et al., 2012; Kuperman and Abramson, 2001;
Lieberman et al., 2005; Lima et al., 2009; Nowak, 2006; Pacheco
et al., 2006; Perc et al., 2013; Szabó et al., 2004; Szolnoki and
Szabó, 2004; Szolnoki and Perc, 2009; Szolnoki et al., 2008; Wang
et al., 2006; Ying et al., 2007).

Here, we link these two aspects of evolutionary game theory
and evolutionary graph theory to show how relative intransitivity
and quenched randomness in small-world networks interact to
determine strategy coexistence in finite populations. In most cases

in our models, when quenched randomness is relatively low,
greater initial intransitivity leads to greater long-term coexistence
because it takes fewer extinctions to attain a highly intransitive
state in which the competitive abilities of strategies are balanced
at the community level. However, when quenched randomness
exceeds a critical value, Qc, population fluctuations increase to
such a degree that coexistence is no longer possible, and a single
strategy typically takes over the entire network. This emphasizes
the importance of space per se in determining intransitivity-
mediated strategy coexistence (e.g., Durrett and Levin, 1998;
Frean and Abraham, 2001; Kerr et al., 2002; Laird, 2014) and
reaffirms the notion that dispersal and long-range connections can
potentially destroy coexistence by synchronizing regions of net-
works that would otherwise evolve independently (Szabó et al.,
2004).

We further show that Qc depends positively on the number of
interacting individuals in the system, and that this critical value
can even disappear in populations that are sufficiently large
(where “sufficiently large” itself depends on neighborhood size,
k). We nevertheless argue that quenched randomness and long-
range connections are still likely to be relevant to the maintenance
of diversity in many intransitive systems, particularly those of a
social or biological nature. Our argument stems from the char-
acteristic size of typical socio-biological systems, as compared to
physical ones: In statistical physics, a critical aspect of simulation-
model building is ensuring that the system is large enough to
avoid accidental extinctions associated with finite-size effects (e.g.,
Szabó et al., 2004). This makes good sense when dealing with
multitudinous interacting particles, for example. However, in
community ecology, the main focus of our work here, populations
are finite in practice, and, indeed, often small. Thus, we contend
that it is important to understand the nature of Qc on the
coexistence of strategies in intransitively competing systems, even
if this critical value vanishes as population size approaches infinity.
Just as finite populations are important to our understanding of
the evolutionary game dynamics of cooperation (Nowak et al.,
2004; Taylor et al., 2007; Traulsen et al., 2005), so too are finite
populations important to our understanding of the coexistence
criteria for intransitively competing strategies.

Our results lend support to the hypothesis that intransitivity-
mediated coexistence may be most prevalent in spatial systems
whose high natural clustering (‘cliquishness’) and characteristic
path-lengths (‘degrees of separation’; Watts and Strogatz, 1998)
hinder the spontaneous emergence of global oscillations and
guard against the collapse of diversity. It is therefore intriguing,
and worthy of additional study, that several of the best examples
of this potential mechanism of coexistence come from systems
where competition and dispersal/colony growth are predomi-
nantly local in their extent (e.g., Jackson and Buss, 1975; Kerr
et al., 2002). On the other side of this argument, it is tempting to
speculate that ongoing transitions toward socially structured
networks with very long distance connections may lead to the
erosion of intransitive preferences (at the network level) in
humans, and possibly the loss of ideological or cultural diver-
sity—a process that may be mitigated or enhanced, respectively,
as the size of the networks (N) or the size of neighborhoods (k)
expands.

Our results also suggest several other outstanding questions.
For example, how do intransitivity and quenched randomness
affect strategy coexistence when competition is more symmetrical,
such that the outcome of an individual competitive interaction is
uncertain (Vandermeer and Yitbarek, 2012)? What is the effect
when the interaction graph is not static, but free to evolve as
connections are severed, shuffled, and re-established (Pacheco
et al., 2006; Santos et al., 2006; Szolnoki and Perc, 2009)? Does
annealed randomness produce similar results to quenched
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randomness, as it does in three-strategy intransitive assemblages
(Szabó et al., 2004)? While these questions are as yet unanswered,
it is certainly clear that variation in interaction graph topology is a
crucial aspect of whether intransitivity-mediated coexistence can
be realized in systems playing rock–paper–scissors and its more
strategy-rich counterparts.
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Fig. A1. [Subsequent page]. An example of a regular 25-individual interaction graph. Nodes (circles, 
labeled A-Y) represent individuals, and edges (black, solid lines) connect individuals that interact. N = 25 
nodes; k = 4 edges per node. Q = 0.1 meaning that QNk/2 = 5 random connections in the original lattice 
are severed (i.e., AU, DE, JO, MN, and QR; dashed grey lines), and the resulting half-edges are randomly 
joined (i.e., AQ, DJ, EM, NR, OU). While this example has N = 25 nodes, most of our actual simulations 
have N = 62500 nodes. 
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Fig. A2. [Subsequent four pages]. Matrices: An example s = 7-strategy tournament matrix (M = [mij]) of 
maximum intransitivity (RI = 1). Strategies are labeled 1-7. When mij = 1, the strategy of row i 
outcompetes the strategy of column j. When mij = 0, the strategy of row i is outcompeted by the 
strategy of column j (or nothing happens in the case of i = j). The column marked w gives the row sums, 
the number of wins each strategy has against the other strategies; taken together, the w column 
represents the score sequence of the tournament. Graphs: The graphs all correspond to M. The graph in 
the blue box is uncolored; the other graphs are colored to highlight each sub-graph triad in turn (of 
which there is a total of C(s, 3) = 35). In each case, nodes represent strategies and directed edges 
represent the competitive relationships within a pair of strategies, with X → Y indicating that strategy Y 
outcompetes strategy X. Note that this is the opposite direction of directed edges in some previous 
studies; however, this formulation is intuitive because it means that arrows flow in the direction of 
competitive replacement. In the graphs that highlight the triads, intransitive triads are given in green 
and transitive triads are given in red. Note that there are exactly ϕ−1 = (s3 – s)/24 = 14 intransitive triads 
in this maximally intransitive tournament, as demonstrated by Kendall and Babington Smith (1940).   
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Fig. A3. [Subsequent 24 pages]. Each sub-figure, (a) through (x), shows the full model results (when N = 
62500) for a particular combination of the number of neighbours per individual (i.e., the number of 
edges per node; k) and the initial number of strategies (s), as given in the following hyperlinked table 
(click on red letters):  

 Neighbours per individual (k) 
Initial number of  

strategies (s) 3 4 6 8 

6 (a) (g) (m) (s) 
7 (b) (h) (n) (t) 

20 (c) (i) (o) (u) 
21 (d) (j) (p) (v) 

100 (e) (k) (q) (w) 
101 (f) (l) (r) (x) 

 
In each sub-figure, the top row (composed of a single panel) gives the number of generations until the 
first strategy extinction, and the second, third, and fourth rows (each composed of seven panels) give, 
respectively, the current strategy richness (r), the current strategy evenness (Evar), and the current 
relative intransitivity (RI) for the initial conditions (‘start’) and in generations 1, 10, 100, 1000, 10000, 
and 100000, for various combinations of the initial relative intransitivity of the tournament graph (RI) 
and quenched randomness of the interaction graph (Q). Colors represent the model outcome (see 
legends to right of rows); in the case of the RI row, white and grey regions represent, respectively, cases 
where strategy richness is 1 or 2 (i.e., for which RI is undefined).   

For s = 6, 7, 20, and 21, all possible values of initial intransitivity are considered (respectively numbering 
9, 15, 331, and 386 evenly spaced values between 0 and 1, inclusive). For s = 100 and 101, there are too 
many possible values of initial intransitivity to consider (41651 and 42926, respectively); hence, 401 
evenly spaced values between 0 and 1, inclusive, are considered instead. In every case, 101 evenly 
spaced values of Q between 0 and 1, inclusive, are considered. Within each sub-figure the corresponding 
RI and Q coordinates from every panel represent the outcome of a single model run. 

Note that in the case of k = 4, 6, and 8 ((g) – (x)), there is a threshold value of Q, beyond which strategy 
coexistence does not occur. However, in the case of k = 3 ((a) – (f)), there is no such threshold, at least 
for this population size (N). 
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Fig. A4. [Subsequent page]. Each panel gives, for particular combinations of the number of neighbours 
per individual (k; columns) and initial strategy richness (s; rows), the proportion of simulation runs that 
became monocultures within 105 generations (across all tested values of initial RI) for values of Q 
between 0 and 1 in increments of 0.01. Qc was estimated as the lowest value of Q for (and above) which 
more than 70% of the initial RI values examined resulted in monoculture (70% lines shown for visual 
reference).  
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Fig. A5. [Subsequent page]. Generations until first extinction (top row), final strategy richness (r; second 
row), final strategy evenness (Evar, third row), and final relative intransitivity (RI, bottom row) as a 
function of the number of neighbours per individual (k; columns), initial relative intransitivity (RI), and 
quenched randomness (Q). Population size: N = 10000; initial number of strategies: s = 101. Each pixel 
represents a single model run. Interpretation of colours is given in the legends. (In the bottom row, 
white regions correspond to situations where r < 3, meaning that RI is undefined.) 
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Fig. A6. [Subsequent page]. Relative area (A; red) and strategy evenness (Evar; blue) as a function of 
quenched randomness (Q; horizontal axis), number of neighbours per individual (k; columns), and 
population size (N; rows). In every case, s = 3 and RI = 1 (i.e., intransitive three-strategy assemblages). A 
is estimated as the proportion of the area of the equilateral-triangular phase space that is filled with a 
convex hull surrounding the population trajectory between model generations 90001 and 100000 (e.g., 
the outermost outlines of the trajectories in the phase diagrams in Fig. 3). Evar is estimated as the 
average Evar over the same range of model generations. Symbols give the results of individual runs; there 
are 10 replicates for each value of Q between 0 and 1, inclusive, in increments of 0.01. Lines join the 
average values for each unique value of Q examined.   

For k = 4, 6, and 8, A increases with Q, indicating that the amplitude of population oscillations becomes 
progressively greater. At Qc, A abruptly decreases to 0; in the region beyond Qc, the amplitude of 
population oscillations is so great that two of the three strategies go extinct before generation 90001, 
and the population trajectory subsequently remains static at one of the three corners of the phase 
space (A = 0). Concomitantly, Evar decreases with Q, indicating increasing disparity in the relative 
abundance of the three strategies. At Qc, Evar abruptly increases to 1; monocultures have an evenness of 
1 by definition. Note that in the smaller populations (N = 10000; top row) the increase in A and the 
decrease in Evar with Q are both rapider than in the larger populations (N = 62500, the same size as those 
highlighted in the main text; bottom row). Thus, the onset of violent population fluctuations sufficient to 
cause extinction depends on population size; i.e., Qc is positively related to N, at least within the region 
of N values examined here.   

For k = 3, the situation is slightly different, in that N = 62500 is a sufficiently large population to ensure 
that fluctuations never become sufficiently large to result in strategy extinctions within 100000 
generations. This explains why there was no observed Qc value for k = 3 interaction graphs in the main 
results. With smaller populations (N = 10000), the increase in amplitude of population oscillations is 
great enough to allow for occasional strategy extinctions starting at Q = 0.38. However, even beyond 
this value of Q, most model runs result in three-strategy coexistence. Presumably, a consistently 
measurable Qc for k = 3 interaction graphs only comes into play at even smaller population sizes. 
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Fig. A7. [Subsequent page]. Top row: Relative area (A) as a function of population size (square root-
transformed, L = N0.5; horizontal axis) and number of neighbours per individual (k; panels). In every case, 
s = 3, RI = 1, and Q = 1 (i.e., intransitive three-strategy assemblages interacting on regular random 
graphs). A is estimated as the proportion of the area of the equilateral-triangular phase space that is 
filled with a convex hull surrounding the population trajectory between model generations 90001 and 
100000 (e.g., the outermost outlines of the trajectories in the phase diagrams in Fig. 3). Symbols give the 
results of individual runs; there are 10 replicates for each of L = 10, 50, 100, 150, 200, 250, 300, 350, 
400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, and 1000 (i.e., population sizes spanning N = 
100 to 106). There are a further 10 replicates each for L = 50 to 150 for k = 3 and between L = 400 to 600 
for k = 4, in increments of 2, to characterize the transitions from monoculture to coexistence with 
greater resolution. Lines join the average values for each unique value of N examined. 

When N is relatively small, the large fluctuations that accompany rock-paper-scissors competition on 
regular random graphs (i.e., Q = 1) result in the extinction of two of the three strategies (A = 0). 
However, when N is sufficiently large, even these large fluctuations do not preclude strategy 
coexistence. Just what constitutes ‘sufficiently large’ is highly dependent on k, the number of 
neighbours per individual. When k = 3 rock-paper-scissors coexistence is predicted to be more likely 
than monoculture when the population size is greater than approximately N = 8876 (i.e., according to 
logistic regression; bottom row). For k = 4, the switch occurs at approximately N = 206297 (bottom row). 
Evidently, for k = 6 and 8, the population sizes needed to allow coexistence in this scenario are rather 
greater: N > 106. Together, these findings help explain why in the main results, in which N = 62500, 
critical values of Q were evident for k = 4, 6, and 8, but not k = 3 (Fig. 1, Table 1). More broadly, it is 
evident that the existence of a critical quenched randomness is a phenomenon of finite population sizes. 
This makes Qc particularly relevant to biological systems which are themselves finite and often small 
(compared to physical systems with extremely large N). 
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